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Abstract

Under distribution shifts, deep networks
exhibit a surprising phenomenon: in-
distribution (ID) versus out-of-distribution
(OOD) accuracy is often strongly linearly
correlated across architectures and hyperpa-
rameters, accompanied by the same linear
trend in ID versus OOD agreement between
the predictions of any pair of such indepen-
dently trained networks. The latter phe-
nomenon called “agreement-on-the-line” en-
ables precise unlabeled OOD performance es-
timation of models. In this work, we discover
that agreement-on-the-line emerges even in
linear classifiers over Gaussian class condi-
tional distributions. We provide theoretical
guarantees for this phenomenon in classifiers
optimized via randomly initialized gradient
descent, approximated by linear interpola-
tions between random vectors and the Bayes-
optimal classifier. Next, we prove a lower
bound on the residual of the correlation be-
tween ID versus OOD agreement that grows
proportionally with the residual of accuracy.
Real-world experiments on CIFAR10C shifts,
validate our findings and the broader rele-
vance of our theoretical framework.

1 INTRODUCTION

A long standing challenge with deep neural networks
is their tendency to perform unreliably under distri-
bution shifts. Surprisingly, a substantial collection
of recent works show that the model performance
of neural networks on natural image and language
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shifts tends to degrade in a highly predictable fash-
ion (Miller et al., 2021, 2020; Shankar et al., 2020).
In particular, many real-world benchmarks observe
a phenomenon called “accuracy-on-the-line” (Miller
et al., 2021) where the in-distribution (ID) and out-
of-distribution (OOD) classification accuracies of deep
networks are strongly linearly correlated across archi-
tectures and hyperparameters, as measured by the co-
efficient of determination (R2).

Following this observation, Baek et al. (2022) discov-
ered a coupled phenomenon called “agreement-on-the-
line” — in circumstances where a set of deep net-
works observe strong correlation in ID versus OOD
accuracy, the agreement (the rate at which the pre-
dictions of two models agree) between these models is
also strongly linearly correlated ID versus OOD with
the same slope and bias. On the other hand, when
the linear correlation of accuracy is weak, the linear
correlation of agreement is also weak1. Accuracy-
on-the-line and agreement-on-the-line together pro-
vide a neat paradigm for OOD performance estima-
tion without any labeled data. When accuracy-on-
the-line holds, OOD performance is a univariate func-
tion of ID performance alone, independent of any algo-
rithmic choices made during neural network training.
Agreement-on-the-line is useful in data constrained
regimes because agreement is a not a label-dependent
quantity. First, without any OOD labels, one can
verify if accuracy-on-the-line holds by checking for
agreement-on-the-line. Second, since the linear fit of
these trends match, one can simply transform ID ac-
curacies by the slope and bias of agreement-on-the-line
to get a close estimate of OOD accuracies.

While these phenomena have immediate practical
value, the current literature lacks theory that ex-
plains why agreement-on-the-line occurs jointly with

1“Agreement-on-the-line” often refers to the strongly
and weakly correlated cases jointly. However, we will use
this term to only refer to the prior case when ID versus
OOD agreement is strongly correl ated with the same slope
and bias as accuracy-on-the-line.
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accuracy-on-the-line. Understanding this question is
critical to guarantee when agreement-on-the-line pro-
vides accurate estimates of OOD performances in prac-
tice. Although several works provide theoretical guar-
antees for the accuracy-on-the-line phenomenon (LeJe-
une et al., 2024; Mania and Sra, 2020), existing anal-
yses of agreement-on-the-line has been limited to set-
tings where the ID versus OOD trends of accuracy
and agreement do not match in both slope and inter-
cept (Lee et al., 2023). Further complicating theoreti-
cal analyses, previous empirical findings had suggested
that agreement-on-the-line is a phenomenon specific to
deep networks and not simpler model families, e.g. lin-
ear classifiers (Baek et al., 2022).

In this work, we establish formal guarantees for
agreement-on-the-line in a simple setting of high-
dimensional linear classifiers and Gaussian class con-
ditional distributions. In particular, we analyze sets of
linear models formed by taking convex combinations
of random vectors and the optimal Bayes classifier – a
construct we call the convex collection. Surprisingly,
both convex collections and sets of linear models opti-
mized by randomly initialized gradient descent exhibit
agreement-on-the-line and accuracy-on-the-line under
our data setup. Moreover, our theoretical findings
closely predict when agreement-on-the-line emerges in
deep neural networks on real benchmarks. A detailed
summary of our contributions is outlined below.

• In §4, we characterize conditions under which
agreement-on-the-line occurs in convex collec-
tions. We formalize the measure called the sim-
ilarity score between pairs of models, and char-
acterize the range of similarity scores where ID
versus OOD agreement is strongly correlated with
matching linear trend as accuracy-on-the-line. We
prove when model pairs in the convex collection
fall in this “strong region”, depending on the de-
gree of distribution shift, learnability of the ID
task, and the eigenvalue decay rate of the class-
conditioned covariance matrices.

• In §5, we prove a lower bound on the absolute
residual of agreement-on-the-line trend that grows
proportionally to that of the accuracy-on-the-line
trend. This guarantees the absence of the false
positive event where agreement-on-the-line occurs
but accuracy-on-the-line does not.

• In §6, we validate our findings from §4 and §5 on
CIFAR10C (Hendrycks and Dietterich, 2019) in
deep networks and CLIP (Radford et al., 2021).
Our conclusions in linear models well characterize
when agreement-on-the-line occurs in deep net-
works if we measure how the shift is encoded in
the penultimate representation space.
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Figure 1: Convex and trained collections Both
convex (Left) and SGD trained (Right) model collec-
tions observe accuracy-on-the-line and agreement-on-
the-line under scale shifts, where the class-conditioned
covariance matrix shifts from Σ = 1/2 · I → I.

2 RELATED WORKS

Accuracy-on-the-Line Accuracy-on-the-line is a
widely occurring phenomenon in deep networks across
distribution shift benchmarks such as regional and
temporal shifts in the WILDS dataset (Koh et al.,
2021), corrupted ImageNet and CIFAR10 (Hendrycks
and Dietterich, 2019), dataset reproductions of Ima-
geNet and MNIST (Recht et al., 2019; Shankar et al.,
2020; Yadav and Bottou, 2019), NLP tasks such as text
classification and question-answering (Miller et al.,
2020; Awadalla et al., 2022), and Kaggle competition
train-test splits (Roelofs et al., 2019). This strong ID
versus OOD correlation in accuracy has been shown to
hold across models of various architectures, hyperpa-
rameters, and training duration (Miller et al., 2021).

Several works have tried to uncover the theoretical un-
derpinnings of accuracy-on-the-line. Mania and Sra
(2020) observe the phenomenona under assumptions
on how models learn: the set of in-distribution exam-
ples where weaker models predict correctly must not
overlap with examples that stronger models predict
incorrectly. Similar to our work, others have studied
the problem in linear models and Gaussian data. In
particular, we study distribution shifts over symmet-
ric Gaussian class-conditional distributions and binary
class labels Miller et al. (2021). They showed that
for only under distribution shifts that simply scale the
norm of the class mean or covariance by a constant fac-
tor, any arbitrary collection of linear classifier would
observe perfect accuracy-on-the-line with R2 = 1. For
shifts that further change the direction or shape of
the class mean or the covariance matrix, accuracy-on-
the-line occurs under specific asymptotic conditions
in the limit of the data dimensions (Miller et al.,
2021; LeJeune et al., 2024). In our work, we show
that agreement-on-the-line requires additional condi-
tions beyond those required for accuracy-on-the-line.



Christina Baek, Aditi Raghunthan, Zico Kolter

Agreement-on-the-line Baek et al. (2022) ob-
served that under tasks where accuracy-on-the-line
holds, a similar phenomenon also holds for the agree-
ment between pairs of neural network classifiers: the
ID versus OOD agreement between the predictions of
any two pairs of neural network classifiers also observes
a strong linear correlation with the same slope and bias
as the linear fit of accuracy-on-the-line. Of particular
relevance to our work, Saxena et al. (2024) recently dis-
covered that even collections of linear classifiers fine-
tuned on top of frozen neural network embeddings can
observe on-the-line trends.

Previously, Lee et al. (2023) analyzed agreement-on-
the-line in 2-layer deep linear networks for the mean
squared error analogues of accuracy and agreement.
Similar to our work, they prove that models trained
from randomly initialized weights exhibit agreement-
on-the-line. However, they were only able to observe
matching slopes and not matching intercepts between
the linear fit of accuracy and agreement. In our work,
we return to the classification setting in linear models
and evaluate accuracy by 0 − 1 loss, consistent with
previous empirical findings (Miller et al., 2021; Baek
et al., 2022). We prove conditions under which the ac-
curacy and agreement linear trends match perfectly.

3 PRELIMINARIES

3.1 Notations

We use bolded lower case letters x for vectors, un-
bolded lower case letters x for scalars, and capital let-
ters A for matrices. w will be used to refer to the
weights of a generic linear classifier. Bolded wi refers
to the ith classifier in some model collection {wi}ni=0.
Unbolded wij stands for the jth entry in model wi.

3.2 Data

Consider a simple binary classification problem where
the examples of each class are normally distributed.
First, the class label y is uniform over {−1, 1} on both
the original distribution D and the shifted distribu-
tion D′. Next, conditioned on y, the data x ∈ Rd is
normally distributed i.e.

x | y ∼ N (yµ;σ2Σd×d).

Without loss of generality, we fix µ = d−1/21 and σ =
1/2 in all our experiments. The shifted distribution
D′ can change as follows:

Mean Shift: µ′ = αµ+ β∆µ

Covariance Scale Shift: σ′ = γσ subject to γ > 0

Covariance Shape Shift: Σ′ = Σ+∆Σ

where α, β > 0 are fixed scalars and ∆µ ∈ Rd where
∥∆µ∥ = 1 and ⟨µ,∆µ⟩ = 0.

Decay Rate of Covariance Matrix’s Eigenvalues
As we will observe, whether accuracy-on-the-line and
agreement-on-the-line holds depends on the shape of
the covariance matrix. We study different covariance
matrix shapes of the form

Σ−α
d = N · diag

([
k−α]d

k=1

)
where N =

d∑d
i=1 k

−α
(1)

where N is a normalization constant and α ≥ 0 con-
trols the decay rate of the eigenvalues of the covariance
matrix. We refer to any covariance matrix with α ≫ 0
as “fast-decaying”.

3.3 Model Collection

We consider linear classifiers f(x) = ⟨w,x⟩ without
bias. Accuracy-on-the-line and agreement-on-the-line
is a phenomena that occurs for an collection of trained
classifiers. In our study, we will simulate “trained”
classifiers as linear combinations of the Bayes opti-
mal classifier w⋆ = Σ−1µ/

∥∥Σ−1µ
∥∥ and randomly

initialized weights ϵ uniformly sampled from the set
W = {x | x ∈ Sd−1, ⟨w⋆,x⟩ = 0}. Specifically, con-
sider the hypothesis distribution wi ∼ Ha,b where

wi = a
Σ−1µ

∥Σ−1µ∥ + bϵ (2)

and a2 + b2 = 1 for a, b ∈ [0, 1]. Roughly, Ha,b sim-
ulates the distribution of linear models trained from
random initialization for finite gradients steps. Mod-
els with a range of ID accuracies can be collected by
sampling models from Ha,b induced by every value a,
reaching the Bayes optimal classifier w⋆ when a = 1.
By slightly abusing the term “convex”, we call such
collections of models the convex collection. In the next
paragraph, we discuss in detail the relationship be-
tween convex models and trained models.

Connection to Trained Models We note several
similarities and differences between convex models and
logistic models optimized by randomly initialized gra-
dient descent. First, in our data setting with symmet-
ric Gaussian class-conditioned distributions, the ex-
pected risk minimizer of logistic regression is equal to
the optimal Bayes classifier (Bishop and Nasrabadi,
2006). Thus, in the data limit, the start and end
points of the optimization trajectory is the same be-
tween trained models and convex models. However,
while convex models follow a strict linear trajectory
from random initialization to the optimal Bayes clas-
sifier, the training trajectory of any logistic classifier
is noisy and gradient flow is not generally linear. Sec-
ond, our model assumptions loosely resemble those of
LeJeune et al. (2024). Notably, they similarly study
accuracy-on-the-line in linear combinations of random
vectors and the optimal classifier w = Σ(aw⋆ + bϵ)
where ϵ ∼ N(0, I). They provably show that in the
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proportional asymptotic regime, the regularized em-
pirical risk minimizer follows this form under certain
data assumptions. Finally, we provide empirical evi-
dence that the convex collection achieves the same ID
versus OOD accuracy and agreement trends as trained
logistic models, as shown in Figure 1, 2, 2a, 2b. Thus,
we argue that the convex collection can sufficiently
characterize the behavior of trained models for our
purpose of studying agreement-on-the-line.

3.4 Expected Accuracy and Agreement

We are interested in two quantities: accuracy and
agreement. Accuracy measures the rate at which a
model’s prediction agrees with the ground truth la-
bel, whereas agreement measures the rate at which
the predictions of two models agree. Formally, given a
distribution D over (x, y) input-label pairs and a pair
of models fi and fj that map from Rd → {−1, 1}, the
expected accuracy and agreement is defined as

AccD (fi) = Ex,y∼D [1{fi(x) = y}] , (3)

AgrD (fi, fj) = Ex,y∼D [1{fi(x) = fj(x)}] , (4)

Over our binary Gaussian mixture, for any pair of lin-
ear models wi and wj , these quantities simplify to

AccD (wi) = Prx,y∼D

(
y ·wT

i x ≥ 0
)
= Φ(xi) (5)

AgrD (wi,wj) = Prx∼D

(
(wT

i x) · (wT
j x) ≥ 0

)
= Prx∼D

(
wT

i x ≥ 0,wT
j x ≥ 0

)
+ Prx∼D

(
wT

i x < 0,wT
j x < 0

)
= BvN (−xi,−xj ; ρ) + BvN (xi, xj ; ρ)

(6)

where xi =
wT

i µ

σ ∥Σ1/2wi∥
, xj =

wT
j µ

σ ∥Σ1/2wj∥
,

ρ = SC

(
Σ1/2wi,Σ

1/2wj

)
and SC(u,v) = ⟨u/∥u∥, v/∥v∥⟩. Notably, accuracy can
be expressed as the standard univariate Gaussian CDF
Φ(·), whereas agreement is equal to the sum of two
standard bivariate Gaussian CDF’s BvN(·):

BvN (a, b; ρ) = Pr

(
N
(
0,

[
1 ρ
ρ 1

])
≤
[
a
b

])
=

1

2π
√

1− ρ2

∫ a

−∞

∫ b

−∞
exp

[
−
(
x2 − 2ρxy + y2

2 (1− ρ2)

)]
dxdy

These derivation follow directly from the fact that
under the class-conditioned distribution x | y, wT

i x is
also normally distributed N (ywT

i µ, σ
2wT

i Σwi) due to
the linear transformation property.

3.5 Probit Transform

To observe a better linear trend in ID versus OOD ac-
curacy and agreement, it is common practice to first

transform the statistics by the probit scale, i.e., the in-
verse CDF of the standard univariate Gaussian Φ−1(·)
(Miller et al., 2021; Baek et al., 2022). In our paper,
we similarly study linear trends after probit scaling.

3.6 Accuracy and Agreement on the Line

We formally describe the two phenomena:

Accuracy-on-the-line refers to when the the probit-
scaled OOD accuracy is strongly linearly correlated
with the probit-scaled ID accuracy across a set of n
models. Specifically, ∀i ∈ [n],

Φ−1 (AccD′ (wi)) = m · Φ−1 (AccD (wi)) + b

Previous empirical work fit the slope and bias via
least squares over the collection of trained classifiers.
In this work, we simply define the linear fit as the line
connecting the ID versus OOD accuracy of the optimal
Bayes classifier and random classifiers in H0,1. Then
the slope and bias of accuracy-on-the-line is

Slope(m) :=
Φ−1 (AccD′ (w⋆))− EH0,1

[
Φ−1 (AccD′ (w))

]
Φ−1 (AccD (w⋆))− EH0,1 [Φ

−1 (AccD (w))]

Bias(b) := EH0,1

[
Φ−1 (AccD′ (w))

]
−

m · EH0,1

[
Φ−1 (AccD (w))

] (7)

Note that the quantities EH0,1

[
Φ−1 (AccD′ (w))

]
and

EH0,1

[
Φ−1 (AccD (w))

]
over all random initializations

ϵ ∼ W are exactly equal to 0 in our binary classi-
fication setting. In short, the expected accuracy of
random classifiers is 50% and Φ−1 (0.5) = 0. Further-
more, this means that the linear trend is defined only
by the slope, which is the ratio between the perfor-
mance ID and OOD of the Bayes optimal classifier.

The correlation strength of accuracy-on-the-line is
measured by the magnitude of the absolute residual
away from the line. For any classifier wi ∈ H, the
accuracy-on-the-line absolute residual is

RAcc(wi) =
∣∣Φ−1 (AccD′ (wi))−m · Φ−1 (AccD (wi))

∣∣
Agreement-on-the-line is a coupled phenomenon com-
prised of two parts. First, when accuracy-on-the-line
is strong, meaning the accuracy residual is negligible,
the ID versus OOD agreement must also be strongly
linearly correlated with the same slope and bias. Sec-
ond, when accuracy-on-the-line holds weakly, meaning
the residual RAcc is large, the residual of ID versus
OOD agreement must also be weak, such that there is
no false positive event where agreement over-promises
accuracy-on-the-line. To capture both of these qual-
ities, we measure the absolute residual of ID versus
OOD agreement of any pair of models wi,wj ∼ H
away from the linear fit as defined by the slope of
accuracy-on-the-line:

RAgr(wi,wj) =∣∣Φ−1 (AgrD′ (wi,wj))−m · Φ−1 (AgrD (wi,wj))
∣∣

We will also denote the signed residual without the
absolute value as R̃Acc(·), R̃Agr(·).
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Figure 2: Strong region of (x1, x2, ρ) For a fixed x1 ∈ [0.0, 2.0], we shade the region of all (x1, x2, ρ) triplets
where for a scale shift m, agreement-on-the-line holds with RAgr < 0.05. This region is larger for smaller scale
shifts (m ≥ 0.6). In green and red points, we plot the similarity scores between pairs of trained and convex
models, respectively. In dashed line, we plot the expected similarity score from Equation 16. When (a) Σ = I,
similarity scores concentrate inside the strong region, while (b) it varies wildly for fast-decaying covariance
matrices.

4 AGREEMENT-ON-THE-LINE
UNDER SCALE SHIFTS

In this section, we formalize the set of conditions un-
der which the first part of agreement-on-the-line holds,
i.e., strong linear correlation with matching slopes
and bias, under conditions where accuracy-on-the-line
observes a perfect linear trend. Miller et al. (2021)
showed that under distribution shifts D → D′ that
simply change the scale of the mean µ′ = αµ or co-
variance σ′ = γσ, the ID versus OOD accuracy of any
classifier w ∈ Rd lies exactly on the following line:

Φ−1 (AccD′ (w)) =
wTµ′

σ′ ∥Σ1/2w∥
=

α

γ
· wTµT

σ ∥Σ1/2w∥
(8)

⇒ Φ−1 (AccD′ (w)) =
α

γ
Φ−1 (AccD (w)) (9)

We now ask: under simple scale shifts, when do
we observe agreement-on-the-line with the same slope
m = α/γ? Does agreement-on-the-line impose any ad-
ditional data and model conditions?

4.1 Numerical Computation of the
Agreement Residual

While the probit-scaled accuracy can be written in
closed-form, such as in Equation 8, quantifying probit-
scaled agreement is difficult. From Equation 5, we
know that under scale shifts m = α/γ, agreement for

any two classifiers w1,w2 is equal to

AgrD (w1,w2) = b(x1, x2, ρ)

AgrD′ (w1,w2) = b(mx1,mx2, ρ)

where b(a, b, c) = BvN (a, b; c) + BvN (−a,−b; c)

Specifically, ID and OOD agreement is a function
of three variables: the probit-scaled ID accuracies of
the two models xi = Φ−1 (AccD (wi))) and xj =
Φ−1 (AccD (wj))), and

ρ = SC

(
Σ1/2wi,Σ

1/2wj

)
(10)

which is the cosine similarity between the classifiers
projected onto the covariance. We refer to ρ as the
similarity score since it roughly captures how “similar”
two models are inside the span of the data. Note that ρ
is fixed between AgrD and AgrD′ since the covariance
matrix is fixed Σ = Σ′. To emphasize this simplifica-
tion to three variables, we will often refer to ID and
OOD agreement as b(x1, x2, ρ) and b(mx1,mx2, ρ), re-
spectively, where b(·, ·, ρ) is the sum of two standard
bivariate normal CDFs BvN (·, ·; ρ), one with negated
limits of the other.

Finally, we may rewrite the agreement residual as

RAgr(w1,w2)

=
∣∣Φ−1 (b(mx1,mx2, ρ))−mΦ−1 (b(x1, x2, ρ))

∣∣ (11)
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Figure 3: Agreement on the line under different levels
of scale shift, where m = σ′/σ and covariance shapes
Σ = Σ−α

d as defined in §3.2

In the following subsections, we aim to characterize
the range of (x1, x2, ρ) tuples where this residual is
small for arbitrary pairs of classifiers.

However, unlike probit-scaled accuracy, the probit-
scaled agreement does not simplify to a closed-
form expression — the probit (inverse of the uni-
variate CDF) is unable to directly simplify bi-
variate CDFs in a similar fashion as univari-
ate CDFs. We instead use the SciPy module
(scipy.stats.multivariate normal.cdf) to calcu-
late BvN(·) by numerical integration (Genz, 1992). We
then compose its output with the SciPy implementa-
tion of the probit (scipy.stats.norm.ppf).

4.2 Similarity Score Region where
Agreement-on-the-Line Holds

We use fine-grained grid search to find the region of
triplets (x1, x2, ρ) ∈ S where agreement-on-the-line
holds with small residual RAgr (Eq. 11) ≤ 0.05. We
call this region of triplets the “strong region”—any
pair of models that satisfy the accuracy and similarity
score constraints would demonstrate strong accuracy
and agreement-on-the-line. Specifically, for scale shifts
m ∈ [0.2, 0.4, 0.6, 0.8, 0.9], we search over 1.) probit-
scaled ID accuracies x1, x2 ∈ [0, 2] and 2.) similarities
ρ ∈ [−1, 1].

In Figure 2, we shade in the strong region for dif-
ferent degrees of scale shift m. Under scale shifts,

while accuracy-on-the-line holds perfectly for arbitrary
sets of classifiers, agreement-on-the-line holds for a re-
stricted set of models. While for small distribution
shifts (m > 0.8), the residual is small for a fairly wide
range of similarity scores ρ, this range 1.) narrows and
2.) shifts toward 0 as the distribution shift gets larger
(m → 0). Indeed, for large scale shift m = 0.2, convex
collections do not observe agreement-on-the-line be-
cause similarity scores of model pairs fall outside the
narrow strong region (Figure 3).

In the next result, we manually fit a polynomial around
the strong region to formalize these observations.

Numerical Result 4.1 For any two classifiers w1

and w2 with probit scaled ID accuracies x1, x2 ∈ [0, 2],
under any scale shift m = α/γ ∈ [0.2, 0.9], if the simi-
larity score ρ is within

0.3x1x2(
√
m− 0.2)± δ(x1, x2,m) (12)

where δ(x1, x2,m) = 0.1m − 0.1m2(1 − x1)(1 − x2) +
0.5m3, then RAgr(w1,w2) ≤ 0.05.

Roughly, the strong region is characterized by the in-
terval f(x1, x2,m)± δ where f is bilinear with respect
to x1 and x2. Consistent with our empirical findings,
δ grows smaller for larger distribution shifts m → 0.
Moreover, the slope of f is 0.3(

√
m−0.2) ≪ 1, shifting

closer to 0 as m → 0. For interested readers, we pro-
vide a more exact closed-form approximation of the
optimal similarity score function ρ∗(x1, x2,m) where
RAgr(w1,w2) = 0 in §A.1.

Overall, we see that agreement-on-the-line requires the
distribution of similarity scores between pairs of mod-
els be concentrated and sufficiently small, especially
for larger scale shifts. In the next section, we will
analyze how these properties connect to why convex
collections observe agreement-on-the-line.

4.3 Convex Collection Lies in Strong Region

From the previous section, we learned that given any
two models with probit-scaled ID accuracies x1 and
x2, there is a specific range of similarity scores where
agreement-on-the-line holds, and this range narrows
for larger scale shifts. Furthermore, we observed
that this region is well characterized by the interval
f(x1, x2, ρ)± δ where f grows bilinearly in x1 and x2.
The bilinear approximation will become important in
this section, where we analyze if models in the convex
collection falls within the strong region.

In Figure 2, we sample a convex collection of models
with coefficients a, b ∼ U [0, 1] and visualize the simi-
larity score of model pairs. Surprisingly, as shown in
green dots, we observe that 1.) the similarity scores
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tend to lie within the strong region for most scale
shifts, i.e., m ∈ {0.4, 0.6, 0.8, 0.9}, when Σ = I500,
but 2.) when the covariance matrix is fast-decaying
(e.g., Σ500

5,0.01), we observe a higher variance in similar-
ity scores, causing similarity scores to fall out of the
strong region. We corroborate our results in gradient
descent trained models. Interestingly, the similarity
score between trained classifiers follow the same dis-
tribution of similarity scores as our convex collection.
In §A.1, we plot the strong region for each value of m
as separate figures for better visualization.

In the remainder of this section, we theoretically
show why the distribution of similarity scores of mod-
els pairs sampled from the convex collections closely
track the bilinear approximation of the strong region
f(x1, x2, ρ)± δ (Equation 4.1).

Expected similarity score We first show that the
expected similarity score of the convex collection is
bilinear over Gaussians with isotropic covariance ma-
trices Σ,Σ′ = I. Given two classifiers w1 ∼ Ha1,b1 and
w2 ∼ Ha2,b2 , their expected similarity score is

ρ =

〈
w1

∥w1∥
,

w2

∥w2∥

〉
(13)

= a1a2 ∥µ∥−2
2 ⟨µ,µ⟩+ b1b2⟨ϵ1, ϵ2⟩ (14)

= a1a2 + b1b2⟨ϵ1, ϵ2⟩ (15)

⇒ Ew1,w2
[ρ] = a1a2 = (∥µ∥ /σ)−2x1x2 (16)

Note that the ⟨µ, ϵi⟩ terms disappear since any ran-
dom initialization is orthogonal to the Bayes op-
timal classifier by construction. Also, we rewrite
the expected similarity with respect to the probit-
scaled ID accuracies, which are equal to xi =
σ−1 ∥w∥−1 ⟨w,µ⟩ = σ−1ai ∥µ∥ under Σ,Σ′ = I. Fur-
ther, note that ∥µ∥ /σ is equal to the probit-scaled
accuracy of the Bayes optimal classifier. This lends us
the following result.

Proposition 4.2 Under scale shifts m = α/γ <
1 with isotropic class-conditional Gaussians (i.e.
Σ,Σ′ = I), if the optimal classifier achieves

Φ−1 (AccD (w⋆)) = 1.82(
√
m− 0.2)−1/2

then for two classifiers w1 ∼ Ha1,b1 and w2 ∼ Ha2,b2 ,
Ew1,w2 [ρ] is equal to the bilinear approximation of the
strong region f(x1, x2, ρ) from Eq. 16.

Variance of Simility Score Furthermore, we note
that as the data dimension grows, the agreement be-
tween any two classifiers w1 ∼ Ha1,b1 and w2 ∼ Ha2,b2

concentrates at Ew1,w2
[ρ]. From Equation 15, note

that the variance of ρ is

Varw1,w2(ρ) = b21b
2
2E
[
⟨ϵ1, ϵ2⟩2

]
. (17)

Using a standard concentration bound on a sphere, we
show that with high probability, ϵ1 and ϵ2 are close to
orthogonal in high dimensions. Note that the set W
where ϵ is sampled from is simply d − 1 dimensional
sphere embedded in d dimensional space. Using the
following concentration bound for a fixed unit vector
v: Pr (|⟨v, ϵ⟩| > z) ≤ 2 exp

(
−(d− 1)z2/2

)
(Ball et al.

(1997), Lemma 2.1), we prove the following proposi-
tion. See Appendix A.1 for proof.

Proposition 4.3 Under the data assumptions in §3.2
and Σ = I, with probability at least 1−δ, the similarity
score between classifiers w1 ∼ Ha1,b1 and w2 ∼ Ha2,b2

falls within

ρ ∈ a1a2 ± b1b2
√
2(d− 1)−1 log (2/δ) (18)

Note that the bound grows inversely with
√
d, and as

d → 1, ρ diverges away from its expected value.

4.4 Practical Takeaways

Optimal Classifier Performance Proposition 4.2
suggests that for agreement-on-the-line to have match-
ing slope as accuracy-on-the-line, the w⋆ used to con-
struct the convex collection must achieve high ID per-
formance (for scale, note that Φ−1 (97.7%) = 2), espe-
cially for larger shifts m ≪ 1. For a more performant
w⋆, a model does not have to stray less away from
the random initialization to achieve some x% accuracy.
Thus, pairs of models with fixed ID accuracies x1, x2

are less similar, and we saw that low ρ is necessary for
agreement-on-the-line in Equation 12. We also note
that this reflects empirical findings in Figure 1 of Baek
et al. (2022). In benchmarks where agreement-on-the-
line appears in deep networks, the best ID model either
achieves ≥ 0.9% ID accuracy (e.g., CIFAR10C) or the
distribution shift is small (e.g., fMoW).

Degree of Distribution Shift Agreement-on-the-
line also depends on the scale of the distribution shift.
As we saw from Figure 2, the strong region narrows
for larger shifts m ≪ 1, causing the similarity score
between pairs of models to fall outside this region.
This is reflected in our approximation of this region
from Equation 4.1 and Figure 6, where we find see the
width of this region δ ≈ O(m3).

Eigenvalue Decay Rate of Covariance Matrix
Proposition A.1 tells us that agreement is strongly lin-
early correlated in convex collections in high data di-
mension. This has important constraints on the shape
of the covariance matrix. As shown in Figure 2, when
the covariance matrix is fast-decaying or low rank, we
similarly see a large variance in the similarity score.
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5 JOINT OCCURRENCE OF
ON-THE-LINE TRENDS

In this section, we prove the weak-correlation case of
agreement-on-the-line. Recall that agreement-on-the-
line is a two-part empirical phenomenon—either ID
versus OOD accuracy and agreement are both strongly
linearly correlated with matching linear fits, or they
are both weakly linearly correlated with roughly the
same correlation coefficient value R2. In practice, the
correlation of agreement is a useful measure for esti-
mating if accuracy-on-the-line holds without any la-
bels. While it is difficult to show that the R2 of accu-
racy and agreement match exactly, we prove a weaker
statement – for any distribution shift, the worst resid-
ual of agreement RAgr between any two classifiers is
often at least as large as the worst residual of accuracy
RAcc. This guarantees that there is no false positive
event where agreement-on-the-line holds but accuracy-
on-the-line does not.

Consider a general distribution shift where accuracy-
on-the-line does not hold perfectly. Such distribu-
tion shifts go beyond scale shifts and include direc-
tional changes in class-conditional means and covari-
ances such as µ = αµ′ + β∆ or Σ ̸= Σ′. Under such
cases, we may decompose the signed agreement resid-
ual R̃Agr(w1,w2) into the following three terms:

R̃Agr(w1,w2)

= mΦ−1 (b(x1, x2, ρ))− Φ−1 (b(mx1,mx2, ρ))︸ ︷︷ ︸
scale-shift residual s(w1,w2)

+Φ−1 (b(mx1,mx2, ρ))− Φ−1 (b(mx1 + δ1,mx2 + δ2, ρ))︸ ︷︷ ︸
perturbation residual p(w1,w2)

+Φ−1 (b(mx1 + δ1,mx2 + δ2, ρ))

− Φ−1 (b(mx1 + δ1,mx2 + δ2, ρ
′)
)︸ ︷︷ ︸

covariance-shift residual c(w1,w2)

where R̃Acc(w1) = δ1, R̃Acc(w2) = δ′, and ρ′ =
SC

(
Σ′1/2w1,Σ

′1/2w2

)
. The first term is the scale

shifts residual, the second term is from accuracy-on-
the-line not holding perfectly, and the third term mea-
sures covariance shifts Σ ̸= Σ′ leading to ρ ̸= ρ′.

We care about the second term, or the perturbation
residual p(w1,w2), and how this function grows with
the accuracy residual δ1, δ2. Specifically, we show that
within models in a convex collection M = {wi}ni=1,
the worst perturbation residual across all pairs of mod-
els, i.e. maxi,j |p(wi,wj)|, closely tracks the worst ac-
curacy residual δmax = maxi R(w).

5.1 Lower Bound of Perturbation Residual

Given a convex collection M, say that some bad
model wbad ∈ H with probit scaled ID accuracy

Φ−1 (AccD (ŵ)) = x achieves the largest accuracy
residual δmax = argmaxR(w). Furthermore, we can
lower bound the largest perturbation residual with the
perturbation residual between wbad and w⋆, assuming
that the convex collection samples the optimal classi-
fier by setting a = 1 in Equation 2.

Theorem 5.1 Say the largest residual for accuracy-
on-the-line is achieved by a model wbad in the set
M = [wi]

n
i=1. In other words, |δbad| = maxi R(wi)

and furthermore, δbad < 0. Then the worst-case per-
turbation residual is lower bounded by

max
i,j∈[n]

|p(wi,wj)| ≥ (19)[
Φ

(
m
√

x2
∗ − x2

bad

)
− Φ

(
−m

√
x2
∗ − x2

bad

)]
|δbad|

where x∗ = Φ−1 (AccD (w⋆)) , xbad = Φ−1 (AccD (wbad)).

See proof in Appendix 5. First, the theorem implies
that the worst perturbation residual grows ⊗(δbad).
Second, when the distribution shift is small m → 1 and
the accuracy gap between w∗ and wbad is large, the
worst perturbation residual almost matches the worst
accuracy residual. Notably, in the limit, as x∗ → ∞,
the lower bound of the perturbation residual is exactly
equal to δbad. This is trivially true since the agreement
rate between predictions and ground truth labels is
precisely accuracy. We also note that

√
x2
∗ − x2

bad is
often large in practice. Specifically, the state-of-the-
art model is well above 90% on benchmarks whilewbad

tends to be a poor classifier.

6 EXPLAINING REAL-WORLD
FAILURES

Finally, the conditions we have formalized under our
Gaussian data and linear model setting is strongly tied
to when agreement-on-the-line occurs in practice. Sim-
ilar to Saxena et al. (2024), we train linear models over
the CIFAR-10 representations from OpenCLIP ViT-B-
32 (Ilharco et al., 2021; Dosovitskiy, 2020) pretrained
on LAION-2B (Schuhmann et al., 2022). We observe
accuracy-on-the-line and agreement-on-the-line on the
CIFAR-10C benchmark consisting of 19 synthetic cor-
ruptions of CIFAR-10. While accuracy-on-the-line and
agreement-on-the-line hold with strong linear correla-
tion for most synthetic corruptions, there are 6 notable
failure shifts (e.g., Gaussian Noise, Glass Blur, Shot
Noise) where accuracy-on-the-line occurs but agree-
ment has weaker linear correlation as measured by R2.

Recall that under scale shifts, agreement-on-the-line
may not hold when the covariance matrix is very fast-
decaying inducing high variance in agreement. Sur-
prisingly, when we compute the eigenvalues of the av-
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Figure 4: CLIP Failure Cases (Top) Difference be-
tween R2 of ID versus OOD accuracy and agreement
of CLIP linear probes for CIFAR10C shifts. (Bottom)
On-the-line trends on the 6 shifts with largest R2 dif-
ference and 3 shifts with smallest R2 difference.

erage empirical class covariance

ΣClass-Avg =
1

K

K∑
y=1

ny∑
i=1

1

ny

[
zy
i (z

y
i )

T − µyµ
T
y

]
(20)

where {zy
i }

ny

i=1 are the CLIP representations of the
examples in each class y and µy is the empirical class
mean, we can see a notable divide between how fast
the eigenvalues decay for the failure shifts. Specifically,
failure shifts have covariance matrices with faster de-
caying eigenvalues. Furthermore, the weakest linear
correlation in agreement corresponds to the largest dis-
tribution shifts (i.e., slope of accuracy-on-the-line is
small). These findings directly support our theoretical
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Figure 5: Eigenvalues Eigenvalues of ΣClass-Avg of
each CIFAR10C shift sorted from largest to smallest
and normalized by their sum. The eigenvalues of bad
shifts (in blue) decay faster than other shifts (in red).

conclusions from §4.4.

7 CONCLUSION

In total, our work demonstrates that agreement-on-
the-line can appear in simple linear models under the
right assumptions on the randomness in the model hy-
potheses distribution, dimension of the data, shape of
the covariance matrix, and the magnitude of the dis-
tribution shift. Our notion of having sufficiently small
model similarity is closely tied to empirical observa-
tions that deep networks make uncorrelated mistakes
(Nakkiran and Bansal, 2020; Jordan, 2024). In prac-
tice, the actual slope and biases of agreement and ac-
curacy often don’t match when the linear correlation
is not strong, which we do not carefully formalize. We
leave this for future work. Overall, we hope that our
work provides new insights about how models behave
under distribution shift and when we may utilize tools
such as agreement-on-the-line.

8 ACKNOWLEDGEMENTS

AR gratefully acknowledges support from the AI2050
program at Schmidt Sciences (Grant #G2264481),
Google Research Scholar, and Apple. CB is supported
by funding from the Bosch Center for AI.

References

Abramowitz, M. (1974). Handbook of Mathematical
Functions, With Formulas, Graphs, and Mathemat-
ical Tables,. Dover Publications, Inc., USA.



Theory of Agreement-on-the-Line

Awadalla, A., Wortsman, M., Ilharco, G., Min, S.,
Magnusson, I., Hajishirzi, H., and Schmidt, L.
(2022). Exploring the landscape of distributional
robustness for question answering models. arXiv
preprint arXiv:2210.12517.

Baek, C., Jiang, Y., Raghunathan, A., and Kolter,
Z. (2022). Agreement-on-the-line: Predicting the
performance of neural networks under distribution
shift. arXiv preprint arXiv:2206.13089.

Ball, K. et al. (1997). An elementary introduction
to modern convex geometry. Flavors of geometry,
31(1-58):26.

Bishop, C. M. and Nasrabadi, N. M. (2006). Pat-
tern recognition and machine learning, volume 4.
Springer.

Dosovitskiy, A. (2020). An image is worth 16x16
words: Transformers for image recognition at scale.
arXiv preprint arXiv:2010.11929.

Drezner, Z. and Wesolowsky, G. O. (1990). On the
computation of the bivariate normal integral. Jour-
nal of Statistical Computation and Simulation, 35(1-
2):101–107.

Genz, A. (1992). Numerical computation of multivari-
ate normal probabilities. Journal of computational
and graphical statistics, 1(2):141–149.

Hendrycks, D. and Dietterich, T. (2019). Bench-
marking neural network robustness to common
corruptions and perturbations. arXiv preprint
arXiv:1903.12261.

Ilharco, G., Wortsman, M., Wightman, R., Gordon,
C., Carlini, N., Taori, R., Dave, A., Shankar, V.,
Namkoong, H., Miller, J., Hajishirzi, H., Farhadi,
A., and Schmidt, L. (2021). Openclip. If you use
this software, please cite it as below.

Jordan, K. (2024). On the variance of neural network
training with respect to test sets and distributions.
In The Twelfth International Conference on Learn-
ing Representations.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M.,
Zhang, M., Balsubramani, A., Hu, W., Yasunaga,
M., Phillips, R. L., Gao, I., et al. (2021). Wilds:
A benchmark of in-the-wild distribution shifts. In
International conference on machine learning, pages
5637–5664. PMLR.

Lee, D., Moniri, B., Huang, X., Dobriban, E., and
Hassani, H. (2023). Demystifying disagreement-on-
the-line in high dimensions.

LeJeune, D., Liu, J., and Heckel, R. (2024). Mono-
tonic risk relationships under distribution shifts for
regularized risk minimization. Journal of Machine
Learning Research, 25(54):1–37.

Mania, H. and Sra, S. (2020). Why do classifier ac-
curacies show linear trends under distribution shift?
CoRR, abs/2012.15483.

Miller, J., Krauth, K., Recht, B., and Schmidt, L.
(2020). The effect of natural distribution shift on
question answering models. In International confer-
ence on machine learning, pages 6905–6916. PMLR.

Miller, J., Taori, R., Raghunathan, A., Sagawa, S.,
Koh, P. W., Shankar, V., Liang, P., Carmon, Y., and
Schmidt, L. (2021). Accuracy on the line: On the
strong correlation between out-of-distribution and
in-distribution generalization. International Confer-
ence on Machine Learning.

Nakkiran, P. and Bansal, Y. (2020). Distributional
generalization: A new kind of generalization. arXiv
preprint arXiv:2009.08092.

Radford, A., Kim, J. W., Hallacy, C., Ramesh,
A., Goh, G., Agarwal, S., Sastry, G., Askell, A.,
Mishkin, P., Clark, J., et al. (2021). Learning trans-
ferable visual models from natural language supervi-
sion. In International conference on machine learn-
ing, pages 8748–8763. PMLR.

Recht, B., Roelofs, R., Schmidt, L., and Shankar, V.
(2019). Do imagenet classifiers generalize to im-
agenet? In International conference on machine
learning, pages 5389–5400. PMLR.

Roelofs, R., Shankar, V., Recht, B., Fridovich-Keil,
S., Hardt, M., Miller, J., and Schmidt, L. (2019). A
meta-analysis of overfitting in machine learning. Ad-
vances in Neural Information Processing Systems,
32.

Saxena, R., Kim, T., Mehra, A., Baek, C., Kolter, Z.,
and Raghunathan, A. (2024). Predicting the perfor-
mance of foundation models via agreement-on-the-
line.

Schuhmann, C., Beaumont, R., Vencu, R., Gordon,
C. W., Wightman, R., Cherti, M., Coombes, T.,
Katta, A., Mullis, C., Wortsman, M., Schramowski,
P., Kundurthy, S. R., Crowson, K., Schmidt, L.,
Kaczmarczyk, R., and Jitsev, J. (2022). LAION-
5b: An open large-scale dataset for training next
generation image-text models. In Thirty-sixth Con-
ference on Neural Information Processing Systems
Datasets and Benchmarks Track.

Shankar, V., Roelofs, R., Mania, H., Fang, A., Recht,
B., and Schmidt, L. (2020). Evaluating machine
accuracy on imagenet. In International Conference
on Machine Learning, pages 8634–8644. PMLR.

Willink, R. (2005). Bounds on the bivariate normal
distribution function. Communications in Statistics-
Theory and Methods, 33(10):2281–2297.



Christina Baek, Aditi Raghunthan, Zico Kolter

Yadav, C. and Bottou, L. (2019). Cold case: The
lost mnist digits. Advances in neural information
processing systems, 32.



Theory of Agreement-on-the-Line

A APPENDIX

A.1 SCALE SHIFTS EXTENDED

A.1.1 VARIANCE OF SIMILARITY SCORES

Proposition A.1 Under the data assumptions in §3.2 and Σ = I, with probability at least 1− δ, the similarity
score between classifiers w1 ∼ Ha1,b1 and w2 ∼ Ha2,b2 falls within

ρ ∈ a1a2 ± b1b2
√
2(d− 1)−1 log (2/δ) (21)

Proof Given w1 ∼ Ha1,b1 and w2 ∼ Ha2,b2 , recall from Equation 17 that

Varw1,w2
(ρ) = b21b

2
2E
[
⟨ϵ1, ϵ2⟩2

]
. (22)

Using a standard concentration bound on a sphere, we show that with high probability, ϵ1 and ϵ2 are close
to orthogonal in high dimensions. Note that the set W where ϵ is sampled from is simply d − 1 dimensional
sphere embedded in d dimensional space. Using the following concentration bound for a fixed unit vector v:
Pr (|⟨v, ϵ⟩| > z) ≤ 2 exp

(
−(d− 1)z2/2

)
(Ball et al. (1997), Lemma 2.1), note that with probability δ

Pr (|⟨ϵ1, ϵ2⟩| > z) ≤ 2 exp
(
−(d− 1)z2/2

)
= δ (23)

⇒ z =
√
2(d− 1)−1 log(2/δ) (24)

So with probability at least 1− δ, ρ is within the region in Proposition A.1.

A.1.2 CLOSER APPROXIMATION OF SIMILARITY SCORES

In §4, given the ID accuracy of any two classifiers AccD (w1) = a,AccD (w2) = b and their model similarity ρ, we
used numerical estimation to identify the set of all (a, b, ρ) pairs where the residual of agreement RAgr(w1,w2) ≤
0.05. Through numerical simulations, for each degree of scale shift c = α/γ, we identify a unique ρ∗ ∈ [−1, 1]
for each (a, b) pair where RAgr(w1,w2) = 0. Within the range a, b ∈ [0, 2], we see that ρ∗ = f(a, b, c) behaves
as a smooth continuous function. We provide an approximation of f in the following fact we have empirically
verified by grid search. In Fig. 6, we can see that our estimate f̃ tracks f closely for scale shifts c ∈ [0.1, 0.9]

Numerical Result A.2 For any two classifiers w1 and w2 with probit scaled in-distribution accuracies a, b ∈
[0, 2] respectively, under any scale shift determined by c = α/γ ∈ [0.2, 0.9], if the covariance-projected correlation
ρ is within

f̃(a, b, c)± [0.04 + 0.3(c− 0.15)3]

where f̃(a, b, c) equals

0.61 log(c+ 0.95)0.64 exp

(
−2

√
c log(a+ 1) log(b+ 1) log

(
a+ 1

b+ 1

)2
)[

log(1 + a3) log(1 + a3)
]0.45−0.22

√
c−0.1

, (25)
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Figure 6: For each scale shift c and fixed ID accuracy of the first classifier AccD (w1) = a, we interpolate over
AccD (w2) = b ∈ [0, 2] and ρ ∈ [−1, 1] to find all (a, b, ρ) tuples where RAgr(w1,w2) ≤ 0.05. This set is shaded

in light blue. In solid blue, we plot ρ∗ = f(c, a, b). And in dashed blue lines we plot our estimate f̃(c, a, b) plus
or minus the confidence interval in Fact A.1.
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Figure 7: Full-rank: Σ = I500. We provided an expanded view of Figure 2a, where we plot the strong region for
each degree of scale shift c in a separate subfigure. In pink points, we plot the model similarity between sampled
pairs of trained classifiers optimized by gradient descent over the ID distribution. In green points, we plot the
model similarity between sampled pairs from the convex ensemble. Note that the model similarities for pairs of
trained classifiers and convex classifiers are similarly distributed, and they are concentrated around the expected
model similarity plotted in red dashed.
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Figure 8: Approximately Low-Rank: Σ = Σ−2
500 We provided an expanded view of Figure 2b, where we plot the

strong region for each degree of scale shift c in a separate subfigure. In pink points, we plot the model similarity
between sampled pairs of trained classifiers optimized by gradient descent over the ID distribution. In green
points, we plot the model similarity between sampled pairs from the convex ensemble. Note that the model
similarities for pairs of trained classifiers and convex classifiers are similarly distributed, and they vary widely
from the expected model similarity plotted in red dashed.
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A.2 PROOF OF 5.1: LOWER BOUND OF WORST-CASE PERTURBATION RESIDUAL

Note that we can lower bound the magnitude of the perturbation residual by

p(w1,w2) =
∣∣Φ−1 (b(cx1, cx2, ρ))− Φ−1 (b(cx1 + δ, cx2 + δ′, ρ)

)∣∣ ≥ min
0≤t≤1

∣∣∣∣ ddtΦ−1 (b(cx1 + tδ, cx2 + tδ′, ρ)
)∣∣∣∣ (26)

where b(x1, x2, ρ) = BvN (x1, x2; ρ)+BvN (−x1,−x2; ρ), x1, x2 are the ID accuracies of w1 and w2, respectively,
and ρ is the model similarity.

The derivative of Φ−1 (BvN (cx1 + tδ, cx2 + tδ′; ρ) + BvN (−cx1 − tδ,−cx2 − tδ′; ρ)) with respect to t is

d

dt
Φ−1

BvN
(
cx1 + tδ, cx2 + tδ′; ρ

)
+BvN

(
−cx1 − tδ,−cx2 − tδ′; ρ

)︸ ︷︷ ︸
z

 = (27)

1

ϕ (Φ−1 (z))

[
ϕ(cx1 + tδ)Φ

(
cx2 + tδ′ − ρ(cx1 + tδ)√

1− ρ2

)
− ϕ(−cx1 − tδ)Φ

(
−cx2 − tδ′ + ρ(cx1 + tδ)√

1− ρ2

)]
δ (28)

+
1

ϕ (Φ−1 (z))

[
ϕ(cx2 + tδ′)Φ

(
cx1 + tδ − ρ(cx2 + tδ′)√

1− ρ2

)
− ϕ(−cx2 − tδ′)Φ

(
−cx1 − tδ + ρ(cx2 + tδ′)√

1− ρ2

)]
δ′ (29)

We apply the following formulas above:

• Derivative of Inverse Functions Given an invertible function f(x), the derivative of its inverse function
f−1(x) evaluated at x = a is

[f−1]′(a) =
1

f ′[f−1(a)]
(30)

• Derivative of BvN (x, y; ρ) (Drezner and Wesolowsky, 1990) Let ϕ be the standard normal PDF, and
Φ be the standard normal CDF. Then

∂

∂x
BvN (x, y; ρ) = ϕ(x)Φ

(
y − ρx√
1− ρ2

)
,

∂

∂y
BvN (x, y; ρ) = ϕ(y)Φ

(
x− ρy√
1− ρ2

)
(31)

The largest perturbation residual between any two classifiers in the convex ensemble is lower bounded by the
perturbation residual between the “worst” model wbad as we define in §5 and the optimal Bayes classifier w∗

which is the best classifier in our convex ensemble.

Setting w1 = wbad and w2 = w∗ = Σ−1µ/
∥∥Σ−1µ

∥∥, note that in Eq. 27, the variables then equal

x1 = Φ−1 (AccD (wbad)) , x2 = Φ−1 (AccD (w∗)) =
1

σ
(32)

δ = RAcc(wbad) = δmax, δ′ = RAcc(w
∗) = 0 (33)

ρ =
w∗Σwbad

∥Σ1/2w∗∥ ∥Σ1/2wbad∥
=

µ⊤wbad

∥Σ1/2wbad∥
= σx1 = x1/x2 (34)

Note that δ′ = 0 by construction. In Eq. 7, we had set the slope of the accuracy linear trend to be

Φ−1 (AccD′ (w⋆))− EH0,1

[
Φ−1 (AccD′ (w))

]
Φ−1 (AccD (w⋆))− EH0,1 [Φ

−1 (AccD (w))]
=

Φ−1 (AccD′ (w⋆))

Φ−1 (AccD (w⋆))
(35)

Thus RAcc(w
∗) =

∣∣Φ−1 (AccD′ (w∗))− SlopeΦ−1 (AccD (w∗))
∣∣.

By substitution, we can simplify Equation 27 as

=
ϕ(cx1 + tδmax)

ϕ (Φ−1 (z))

[
Φ

(
c(x2

2 − x2
1)− tδmaxx1√
x2
2 − x2

1

)
− Φ

(
−c(x2

2 − x2
1)− tδmaxx1√
x2
2 − x2

1

)]
δmax (36)

We first upper bound the derivative ϕ(Φ−1 (z)). Since ϕ is unimodal centered at 0 and Φ−1 is monotonically
increasing,

ϕ(Φ−1 (z)) ≤ ϕ(max{0,Φ−1 (z)}) ≤ ϕ(max{0,Φ−1 (lower bound of z)}) (37)
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Lemma A.3 The following lower bound of z holds when w1 = wbad and w2 = w∗.

z = b(cx1 + tδ, cx2 + tδ′, ρ) ≥ Φ (cx1 + tδmax)− Φ (−cx2)

(
1− 2Φ

(
−
t
√
x2δmax√
x2
2 − x2

1

))
(38)

Proof We know the following relation about the bivariate normal CDF (Abramowitz (1974), Sec. 26.3)

BvN (h, k; ρ) = Φ(h)− Φ(−k) + BvN (−h,−k; ρ) (39)

Thus,

b(cx1 + tδmax, cx2, ρ) = Φ(cx1 + tδmax)− Φ(−cx2) + 2BvN (−cx1 − tδmax,−cx2; ρ) (40)

Using the following lower bound from Willink (2005),

BvN (−h,−k; ρ) ≥ Φ(−k)Φ

(
ρk − h√
1− ρ2

)
, k > 0, ρ ≥ 0 (41)

and setting h = cx1 + tδmax, k = cx2 = c/σ > 0, and ρ = x1/x2 ≥ 0, presuming x1 > 0 meaning the classifier
wbad does not have worse than random performance in-distribution, we get

BvN (−cx1 − tδmax,−cx2; ρ) ≥ Φ(−cx2)Φ

(
− tδmaxx2√

x2
2 − x2

1

)
(42)

⇒ b(cx1 + tδmax, cx2, ρ) ≥ Φ(cx1 + tδmax)− Φ(−cx2)

(
1− 2Φ

(
− tδmaxx2√

x2
2 − x2

1

))
(43)

Using Lemma A.3, note that

ϕ(cx1 + tδmax)

ϕ (Φ−1 (z))
≥ ϕ(cx1 + tδmax)

ϕ

(
max

{
0,Φ−1

(
Φ (cx1 + tδmax)− Φ (−cx2)

(
1− 2Φ

(
− tx2δmax√

x2
2−x2

1

)))}) (44)

When δmax < 0, note that ∀t ∈ [0, 1], 1− Φ

(
− tx2δmax√

x2
2−x2

1

)
≤ 0, so ϕ(cx1+tδmax)

ϕ(Φ−1(z)) ≥ 1. Thus, we may further lower

bound Equation 27 as

ϕ(cx1 + tδmax)

ϕ (Φ−1 (z))

[
Φ

(
c(x2

2 − x2
1)− tδmaxx1√
x2
2 − x2

1

)
− Φ

(
−c(x2

2 − x2
1)− tδmaxx1√
x2
2 − x2

1

)]
δmax (45)

≥
[
Φ

(
c
√
x2
2 − x2

1

)
− Φ

(
−c
√
x2
2 − x2

1

)]
δmax (46)

This completes our proof.
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